已阅读
自动驾驶商业化第一步激光雷达是必备设备!
概念的提出,让汽车行业的发展看到了新的可能,自动驾驶汽车想要商业化落地,是由、软件技术的提升;法律法规的制定;配套设施的完善及用户对于自动驾驶汽车的认可度提高所决定的,其中硬件、软件技术是自动驾驶汽车走出商业化第一步的根本。
和我们在路上行走一样,自动驾驶汽车想要独立完成驾驶要求,自动驾驶汽车周围环境的勘测是必不可少的,其中,激光雷达作为自动驾驶汽车难以绕开的一个硬件设备,在提及自动驾驶汽车时,总会成为交流的重点。物体检测的策略分为:决策层融合,决策+特征层融合,以及特征层融合。在决策层融合中,图像和点云分别得到物体检测结果(BoundingBox),转换到统一坐标系后再进行合并。激光雷达就是物体检测中重要的硬件设备。
激光雷达的核心是一种光学遥感技术,它通过向待测目标照射出光束,然后接收到待测目标反射回来的信号与发射信号进行比较,经过处理后,获得探测待测目标的位置、速度等信息。激光雷达等应用非常广泛,在测绘学、考古学、地理学、地貌、地震、林业、遥感及大气物理等方面都有应用,此外,地图测绘、高度测量等测绘需求,也可以通过激光雷达得以实现。激光雷达起源于1960年代初期,在激光发明后不久,透过激光对焦成像与透过使用感测器和数位搜集装置测量信号回传时间,及计算距离的能力结合而产生。激光雷达首个应用是在气象学,1971年阿波罗15号任务期间,用来探测月球表面,从而绘制月球地貌。激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统 、信息处理等部分组成。发射系统是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器以及光学扩束单元等组成;接收系统采用望远镜和各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等组合。激光雷达采用脉冲或连续波2种工作方式,探测方法按照探测的原理不同可以分为米散射、瑞利散射、拉曼散射、布里渊散射、荧光、多普勒等激光雷达。
激光雷达也是集激光、全球定位系统与惯性测量装置三种技术于一身的系统,相较于普通雷达,激光雷达具有分辨率高,隐蔽性好,抗干扰能力强等优点。激光雷达按照功能划分为激光成像雷达、激光测距雷达、大气探测雷达、激光测速雷达及跟踪雷达等。激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它还能够完成普通雷达所不能完成的任务,如水雷、探测潜艇、隐藏的军事目标等等。激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,我们经常会在科幻片中看到激光墙,当有人闯入时,系统会立马做出反应,发出警报提醒。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的重要部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风向、风速及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。
激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。
激光雷达根据探测方式可以分为直接探测激光雷达与相干探测激光雷达。直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。激光雷达根据工作介质可以分为半导体激光雷达、气体激光雷达与固体激光雷达等。
半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。激光雷达根据线束分可以分为单线激光雷达与多线激光雷达等。
单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线D。目前在国际市场上推出的主要有 4线 线 线。但价格高昂,大多车企不会选用。激光雷达根据扫描方式可以分为Flash型激光雷达、相控阵激光雷达、MEMS型激光雷达、机械旋转式激光雷达等。Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。
目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代。MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。
激光雷达根据发射波形可以分为脉冲型激光雷达与连续型激光雷达。从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。
激光雷达根据载荷平台可以分为机载激光雷达、星载激光雷达、地基激光雷达及车载激光雷达等。机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。激光雷达对于自动驾驶技术非常重要,也将决定自动驾驶技术何时落地的一大关键因素。
1)激光雷达的波束极窄,在空间搜索目标非常困难,直接影响对非合作目标的截获概率和探测效率,只能在较小的范围内搜索、捕获目标,因而激光雷达较少单独直接应用于战场进行目标探测和搜索。
2)激光一般在晴朗的天气里衰减较小,传播距离较远。而在大雨、浓烟、浓雾等坏天气里,衰减急剧加大,传播距离大受影响。
3)激光雷达成本较高,而且体积较大,这也是影响特斯拉采用纯视觉方案的一大原因。目前,激光雷达的技术还有很大的提升空间,无论是造车新势力,还是传统主机厂,亦或是互联网企业,都在开始布局自动驾驶,据统计,目前已至少有20家车企和自动驾驶公司宣布将激光雷达作为感知套件的一部分,进而量产L3级以上自动驾驶技术。可以说,激光雷达现已成为智能汽车实现高级别自动驾驶的标准配置。希望能在自动驾驶这条赛道上获得主动权,但自动驾驶汽车并不是将硬件软件堆积在一起的一个产物,需要将整车做到有效信息共享与融合。摄像头,毫米波雷达,超声波雷达,激光雷达,作为目前自动驾驶领域最为常用的4种自动驾驶传感器方案,其在探测距离、分辨率、角分辨率等探测参数各异,对应于物体探测能力、识别分类能力、三维建模、抗恶劣天气等特性各有优劣。随着技术的发展,激光雷达技术也将获得提升,自动驾驶技术也将更快得以商业化。对于激光雷达,欢迎留言讨论。
文章出处:【微信号:Smart6500781,微信公众号:SEMIEXPO半导体】欢迎添加关注!文章转载请注明出处。
汽车中起到了至关重要的作用。它可以帮助车辆检测和识别周围环境,包括障碍物检测、定位和导
技术综述 /
的测距原理 /
技术(ADAS)中,双目视觉技术在距离检测方面表现出色,它可以精确地测量物体的距离,提供更客观的数据。 为了应对这
老炮儿 (略有删改) 2023年12月14日,宝马集团官方宣布,其搭载L3级别
公司再迎暴涨 /
和纯计算机视觉对比分析 /
隐秘的角落 /
电子发烧友网报道(文/莫婷婷)在汽车智能化发展过程中,对ADAS的技术追求让
探测和测距。凭借在目标轮廓测量、通用障碍物检出等方面所具有的极佳性能,正在成为L4
与视觉融合感知 /
如何检测障碍物 /
? /
iPhone 15 Pro系列升级:灵动岛、USB-C、3nm、A17 Pro
【紫光同创盘古PGX-Nano教程】——(盘古PGX-Nano开发板/PG2L50H_MBG324第七章)序列检测器实验例程
bytes at port 输出的值一直为0,串口助手可以读取数据,求问可能是什么问题?
紫光同创PGL22G开发板盘古22K开发板,国产FPGA开发板,接口丰富,高性价比
嵌入式学习-飞凌嵌入式ElfBoard ELF 1板卡-在VSCode中进行Linux内核源码的管理